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Catatan Redaksi:

Meshless Numerical Analysis Method adalah suatu metode analisa numerik yang berkembang
dengan pesat sebagai alternatif metode elemen hingga (Finite Element Method) yang sudah cukup
terkenal. Makalah ini merupakan seri pertama dari dua untuk mengenalkan salah satu shape
function yang banyak digunakan untuk Meshless Numerical Analysis Method. Makalah seri kedua
akan memperkenalkan salah satu Meshless Numerical Analysis Method yang dikenal sebagai
Meshless Local Petrov-Galerkin Method.

INTRODUCTION
 

The development of the approximate methods
for the numerical solution of partial differential
equations has attracted the attention of
engineers, physicists and mathematicians for a
long time. Many of these approximate solution
techniques are well-developed and possess much
versatility in analyzing complicated phenomena
whose behaviors is governed by increasingly
complex partial differential equations. Among
these approximate methods, the finite element
method is one of the most popular. It has been
under development for more than 50 years, and
its reliability is already well accepted
throughout the world.

In recent years, meshless methods have been
developed as alternative numerical approaches
in efforts to eliminate known drawbacks of the
finite element method (FEM). The main
objective in developing meshless methods was to
eliminate, or at least reduce, the difficulty of
meshing and remeshing of complex structural
elements. The nature of the various
approximation functions employed by meshless
methods allows the descretization or
redescretization of problem domains by simply
adding or deleting nodes where desired. Nodal
connectivity to form an element as in FEM
method is not needed, only nodal coordinates
and their domain of influence (DOI) are
necessary to descretize the problem domain.
                                                                           
Note: Discussion is expected before June, 1st 2002. The
proper discussion will be published in “Dimensi Teknik
Sipil” volume 4 number 2 September 2002.

Meshless methods may also reduce other
problems associated with the FEM, such as
solution degradation due to locking and severe
element distortion [1].

There are several meshless methods under
current development, including the Element-
Free Galerkin (EFG) method proposed by
Belytschko et al. [2], the Reproducing Kernel
Particle Method (RKPM) proposed by Liu et al.
[3], Smooth Particle Hydrodynamics (SPH)
method proposed by Gingold and Monaghan [4],
Meshless Local Petrov-Galerkin (MLPG) method
proposed by Atluri et al. [1], and some other
methods. The well-establish EFG method, and
newly developed MLPG method use shape
functions which are derived from moving least-
square (MLS) approximation. The main purpose
of this paper is to introduce this MLS
approximation which will be presented in next
section.

 MOVING LEAST-SQUARES
APPROXIMATION

Given a set of nodes x1,  x2,…,xN and a set of
nodal values u1, u2,…,uN the original function
f:f(xi)= ui is to be approximated using no
connectivity information. Consider the approxi-
mation as a product of polynomial basis function
and a set of coefficients as follows:
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where p, the polynomial basis function, is a
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vector with the size mx1 (m is the number of
polynomial coefficients), and a is a set of
coefficients. Examples of polynomial bases and
coefficients a are presented in Table 1.

Table 1. Polynomial Bases

1D pT = [1,x,x2,…,xn]
2D pT = [1,x,y,…xn,yn]
3D pT=[1,x,y,z,…,xn,yn,zn]

aT = [a1,a2,…,am]

It should be noted here that the coefficients used
in the approximation (a) depend on the location
where the original function is approximated,
this is different from the approximation
coefficients used in FEM which are constant.
The task now is to find these coefficients a.
Determination of a is achieved by minimizing a
weighted square of discrete error of the function
u expressed in following term:
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where )( II xxw −  is the degree of influence
(weight function) of node I to a point x in the
problem domain and )()(),( xaxpxx I

T
Iappu = .

Weight function of a point I has a unit value at
that point and smoothly decrease as we move
further from that point and finally reach zero
value at a certain distance (radius) dmax, this
zero value is kept constant at regions beyond
dmax. This dmax is named the domain of influence
(DOI) of that point. Commonly used weight
functions are as follows [5]:

• Gaussian Weight Function
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• Quartic Spline Weight Function
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In matrix form, Equation 2 can be rewritten as:

)()( uPaWuPa −−= TJ (3)

where



























=

=

.

)(...)()(
....
....
....

)(...)()(
)(...)()(

),...,,(

21

22221

11211

21

NmNN

m

m

N
T

ppp

ppp

ppp

uuu

xxx

xxx

xxx

P

u

and



























−

−
−

=

)(0...0
0..
...
...
.)(0
0...0)(

)(

22

11

NNw

w

w

xx

xx

xx

xW
.

Minimizing Equation 3 with the respect to
coefficients a, some expressions below can be
obtained.
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where
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Further, the coefficient a( x ) can be expressed
as:

uxBxAxa )()()( 1−= (5)

then the approximation of the original function
in Equation 1 can be obtained. Substituting
Equation 5 into Equation 1 and rearrange the
equation according to nodal value uI, Equation 1
can be rewritten in this form:
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where )()()()( 1 xBxAxpx I
T

I
−=Φ  is known as

the MLS shape function of node I. BI( x )  is the
Ith column of matrix B( x ). In application, for
example in stress analysis, the degree of
freedom to be computed is the displacement. In
order to get the stress, the strain which is obtain
from displacement derivatives is needed,
therefore the derivatives of the shape function
should be determined too.
These following equations are formulation to
determine the shape functions derivatives:
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PLOTS OF WEIGHT FUNCTION AND
MLS SHAPE FUNCTION

This section presents examples of plots of
weight function and MLS shape function to
make the concept clearer. Let’s observe a 2D
problem domain (1 unit square) defined by
uniformly distributed 11x11 nodes (nodal
spacing is equal to 0.1 unit in both x and y
directions). Quartic spline weight function with
domain of influence 0.4 unit and quadratic
polynomial basis function are used in this
example.

Small circles in Figure 1 are the nodal
coordinates, the black-filled circle is the center
node. The big circle is the domain of influence of
the center node. Weight function and MLS
shape function and their spatial derivatives are
plotted at y=0.5, so that a section of the function
shape along x direction can be shown in order to
observe the features of this MLS approximation
easier. The plots are presented in Figures 2,3,4
and 5.

Figure 1. Center node and its domain of influence in a
given problem domain descretization.
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Figure 2. Quartic Spline Weight Function

Weight Function derivative of center 
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Figure 3. Quartic Spline Weight Function Derivative
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Figure 4. Shape Function of center node

Shape Function derivative of center 
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Figure 5. Shape Function Derivative of center node

From Figure 2 through Figure 5, some
important things can be noted. First, the weight
function is a positive function which has a unit
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value at corresponding point and decreases to
zero at the radius of DOI. MLS shape function
does not have unit value at the corresponding
node, and it is not necessary equal to zero at any
other nodes, which is different from the
Lagrange shape function used in FEM. Thus the
degree of freedoms solved by MLS appro-
ximation are not the real nodal values, they are
fictitious. To get the real nodal value or any
values inside the problem domain, Equation 6
should be used.
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